A PRE-TEST SHRINKAGE ESTIMATOR OF MEAN OF A NORMAL POPULATION

By
M. Pandey and J. Singh*
Banaras Hindu University

(Received: January, 1977)

1. Introduction

Consider a rondom sample of size n from a normal population with mean μ and variance σ^{2}, where σ^{2} may be unknown. If σ_{2} is known, Pradhan [1] proved that a test of $H_{0}: \mu=\mu_{0}$ against H_{1} : $\mu=\mu_{1},\left(\mu_{1}>\mu_{0}\right)$, which minimizes the sum of the probabilities of two types of error, is given by:

$$
\begin{equation*}
\text { Reject } H_{0} \text { if, } \bar{x} \geqslant \frac{\mu_{0}+\mu_{1}}{2} \tag{1}
\end{equation*}
$$

where \bar{x} is the sample mean. If σ^{2} is not known, Singh and Pandey [2] proved that the test (1) still minimizes the sum of the probabilities of two types of error for testing H_{0}.

Thompson [3] showed that if we have some prior knowledge of the value of μ as μ_{0}, the shrinkage estimator $k \bar{x}+(1-k) \mu_{0},(0 \leqslant k$ $\leqslant 1$), performs better in some region of the parameter space. Now suppose from the familarity with the experimental material we have two guessed values of μ; that is, we expect either $\mu=\mu_{0}$ or $\mu=\mu_{1}$. In this case to decide upon the value of μ, we can perform a preliminary test H_{0} according to rule (1). After this we can estimate μ by $k_{1} \bar{x}$ $+\left(1-k_{1}\right) \mu_{0}$, if H_{0} is accepted and by $k_{2} \bar{x}+\left(1-k_{2}\right) \mu_{1}$, if H_{0} is rejected, $0 \leqslant k_{i} \leqslant 1 ; i=1,2$).

To make the problem simpler we have taken $k_{1}=k_{2}=k$ and have defined here a preliminary test shrinkage estimator $\hat{\mu}$. We have also discussed its properties and have recommended on the choice of k on the basis of numerical findings.

[^0]2. The Proposed Estimator and its Properties

We suggest the following estimator $\hat{\mu}$ for μ :
We find that,

$$
\hat{\mu} \ldots \begin{cases}k \bar{x}+(1-k) \mu_{0} & \text { if } \bar{x} \leqslant \frac{\mu_{0}+\mu_{1}}{2} \tag{2}\\ k \bar{x}+(1-k) \mu_{1} & \text { if } \bar{x}>\frac{\mu_{0}+\mu_{1}}{2}\end{cases}
$$

We find that,

$$
\begin{gather*}
\operatorname{Bias}(\hat{\mu})=E(\hat{\mu})-\mu=(1-k)\left(\mu_{1}-\mu\right)+(1-k)\left(\mu_{0}-\mu_{1}\right) \phi\left(\mu_{0}\right) \tag{3}\\
\qquad \phi(u)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} \text { and } \phi(t)=\int_{-\infty}^{t} \phi(u) d u \tag{4}
\end{gather*}
$$

Where $u_{0}=\frac{\left(\mu_{0}+\mu_{1}-2 \mu\right) / \sqrt{ } n}{2 \sigma}$,
The mean square error ($M S E$) of $\hat{\mu}$ is

$$
\begin{align*}
M S E(\hat{\mu})= & E(\hat{\mu}-\mu)^{2} \\
=\frac{\sigma^{2}}{n} & {\left[k^{2}+(1-k)^{2} \triangle_{1}^{2}+2 k(1-k)\left(\triangle_{1}-\Delta_{0}\right) \phi\left(u_{0}\right)\right.} \\
& \left.\quad-(1-k)^{2}\left(\triangle_{1}^{2}-\triangle_{0}^{2}\right) \phi\left(u_{0}\right)\right], \tag{5}
\end{align*}
$$

where $\Delta_{1}=\frac{\sqrt{ } n\left(\mu_{1}-\mu\right)}{\sigma}$ and $\Delta_{0}=\frac{\sqrt{ } n\left(\mu_{0}-\mu\right)}{\sigma}$.

2.1 Efficiency of $\hat{\mu}$ w. r. to $\overline{\mathrm{x}}$:

We define the efficiency of $\hat{\mu} \mathrm{w}$. r. to \bar{x} as

$$
e=\frac{n M S E(\overline{\mathrm{x}})}{M S E(\hat{\mu})}=\frac{\sigma^{2}}{n M S E(\hat{\mu})}
$$

We get,

$$
\begin{array}{r}
e=\left[k^{2}+(1-k)^{2} \triangle_{1}^{2}+2 k(1-k)\left(\triangle_{1}-\triangle_{0}\right) \varphi u_{0}\right) \\
\left.-(1-k)^{2}\left(\triangle_{1}^{2}-\triangle_{0}^{2}\right) \phi\left(u_{0}\right)\right]^{-1} \tag{6}
\end{array}
$$

a pretést shrinkage retimator ó méan of a normal

2.2 The Value of k for which $\hat{\mu}$ has Minimum MSE:

Differentiating (5) w.r. to k we get

$$
\begin{align*}
\frac{\partial \operatorname{MLE}(\hat{\mu})}{\partial k}= & \frac{2 \sigma^{2}}{n}\left[k \left\{1+\Delta_{1}^{2}-2\left(\Delta_{1}-\Delta_{0}\right) \varphi\left(\mu_{0}\right)\right.\right. \\
& \left.\left.-\left(\triangle_{1}^{2}-\Delta_{0}^{2}\right) \Phi\left(u_{0}\right)\right)\right\}-\triangle_{1}^{2}+\left(\Delta_{1}-\Delta_{0}\right) \varphi\left(u_{0}\right) \\
& \left.+\left(\Delta_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)\right] \tag{7}
\end{align*}
$$

Equating (7) to zero the optimum value of k for which MSE $(\dot{\mu})$ is minimum is given by

$$
k=\frac{\triangle_{1}^{2}\left(\triangle_{1}-\triangle_{0}\right) \varphi\left(u_{0}\right)-\left(\triangle_{1}^{2}-\triangle_{0}^{2}\left(\Phi\left(u_{0}\right)\right.\right.}{1+\triangle_{1}^{2}-2\left(\triangle_{1}-\triangle_{0}\right) \varphi\left(u_{0}\right)-\left(\triangle_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)}
$$

2.3 The Range of Values of k for which $\hat{\mu}$ is more

Efficient than \bar{x}

From (6) we see tha $e>1$, if

$$
\begin{array}{r}
(k-1)\left[k\left\{1+\Delta_{1}^{2}-2\left(\Delta_{1}-\Delta_{0}\right) \varphi\left(u_{0}\right)\left(\Delta_{1}^{2}-\Delta_{0}^{2}\right) \Phi\left(u_{0}\right)\right\}\right. \\
\left.+1-\Delta_{1}^{2}+\left(\Delta_{1}^{2}-\Delta_{0}^{2}\right) \Phi\left(u_{0}\right)\right]<0 \tag{9}
\end{array}
$$

It may be checked, by evaluating
$\int_{-\infty}^{\frac{\mu_{0}+\mu_{1^{\prime}}}{2}}\left(\bar{x}-\mu_{0}\right)^{2} f(\bar{x}) d \bar{x}+\int_{\frac{\mu_{0}+\mu_{1}}{2}}^{\infty}\left(\bar{x}-\mu_{1}\right)^{2} f(\bar{x}) d \bar{x}$, that the denominator of
expression (8) is positive. If $k<1$, on diving (9) by $k-1$ we get
where

$$
k^{*}=\frac{\Delta_{1}^{2}-1-\left(\triangle_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)}{1+\Delta_{1}^{2}-2\left(\Delta_{1}-\triangle_{0}\right) \varphi\left(u_{0}\right)-\left(\Delta_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)}
$$

If $k>1$, on dividing (9) by $k-1$ we get

$$
\begin{equation*}
k<k^{*} \tag{12}
\end{equation*}
$$

Combining (10) and (12), we infer that $e>1$, if
either
or

$$
\left.\begin{array}{l}
k^{*}<k<1 \tag{13}\\
1<k<k^{*}
\end{array}\right\}
$$

The inequality (9) can also be written as

$$
\begin{align*}
& k^{2}\left[1+\Delta_{1}^{2}-2\left(\triangle_{1}-\Delta_{0}\right) \varphi\left(u_{0}\right)-\left(\Delta_{1}^{2}-\Delta_{0}^{2}\right) \Phi\left(u_{0}\right)\right] \\
& -2 k\left[\triangle_{1}^{2}-\left(\Delta_{1}-\Delta_{0}\right) \varphi\left(u_{0}\right)-\left(\Delta_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)\right] \\
& +\Delta_{1}^{2}-1-\left(\Delta_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)<0 . \tag{14}
\end{align*}
$$

From (8) and (11) this is equivalent to

$$
\begin{equation*}
k^{2}-2 k k_{m i n}+k^{*}<0 \tag{15}
\end{equation*}
$$

So,
If

$$
\begin{align*}
& e>1 \\
& a<k<b, \tag{16}
\end{align*}
$$

where

$$
\begin{align*}
& a=k_{m i n}-\sqrt{k_{m i n}^{2}-k^{*}} \\
& b=k_{m i n}+\sqrt{\substack{k_{2} \\
m i n}}-k^{*} . \tag{17}
\end{align*}
$$

However, expression (16) holds if $k_{\min }^{2}-k^{*}$ is positive, that is to say, if the roots of the quadratic equation $k^{2}-2 k k_{m i_{\mathrm{n}}}+k^{*}=0$, are real.

Further it can be noted that,

$$
\begin{array}{lrr}
& k^{*}-k_{m i n}= & \frac{\left(\triangle_{1}-\triangle_{0}\right) \varphi\left(u_{0}\right)-1}{1+\triangle_{1}^{2}-2\left(\triangle_{1}-\triangle_{0}\right) \varphi\left(u_{0}\right)-\left(\triangle_{1}^{2}-\triangle_{0}^{2}\right) \Phi\left(u_{0}\right)} \\
& =\frac{1}{2}\left(k^{*}-1\right) .
\end{array}
$$

Thus if we choose the value of $k=k_{m i_{n}}$, MSE of $\hat{\mu}$ will be a minimum and will always be less than σ^{2} / n.

Since we want $0 \leqslant k \leqslant 1$, in case $k^{*}>1$, we take $k=1$. In other situations k^{*} should be the lower limit of the values of k.

3.-Numerical Findings and Recommendations

Table 1 shows the values of k^{*} for various Δ_{0} and Δ_{1}. Since we are considering the case $\mu_{1}>\mu_{0}, \Delta_{1}>\Delta_{0}$. Moreoper, for any Δ_{0} there is only one possible value of $\Delta_{1}, v i z ., \Delta_{0}+\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}$. Since $\frac{\mu_{1}-\mu_{0}}{\sigma / \sqrt{n}}$ is not known, we consider various values of Δ_{1} for a given $\triangle 0$.

of k*
$\left.\begin{array}{cccccccccccccc} & & & & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ -5 & 0.882 & .800 & .601 & .016 & -.862 & .288 & .959 & 1.215 & 1.323 & & & & \\ -4 & - & .800 & .603 & .047 & -.682 & .587 & 1.226 & 1.405 & 1.413 & & & & \\ -3 & - & - & .607 & .093 & -.484 & .952 & 1.503 & 1.535 & 1.405 & & & & \\ -2 & - & - & - & .103 & -.548 & 1.138 & 1.659 & 1.503 & 1.226 & & & & \\ -1 & - & - & - & - & -1.144 & 0 & 1.138 & .952 & .587 & .288 & & & \\ 0 & - & - & - & - & - & -1.144 & -.548 & -.484 & -.682 & -.862 & -.956 & & \\ 1 & - & - & - & - & - & - & .103 & .093 & .047 & .016 & .004 & .002 & \\ 2 & - & - & - & - & - & - & - & .607 & .603 & .601 & .600 & .600 & .600\end{array}\right]$
TABLE 2
Value of a and b

$\Delta_{0} \Delta_{1}$	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8.
-5	$\begin{array}{r} .882 \\ 1.000 \end{array}$	$\begin{array}{r} .800 \\ 1.000 \end{array}$	$\begin{array}{r} .600 \\ 1.002 \end{array}$	$\begin{array}{r} 0.16 \\ 1.000 \end{array}$	$-.862$	$\begin{aligned} & .288 \\ & 1.000 \end{aligned}$	$\begin{array}{r} .943 \\ 1.017 \end{array}$	$\begin{array}{r} .955 \\ 1.221 \end{array}$	$\begin{aligned} & 1.003 \\ & 1.319 \end{aligned}$				
-4	-	$\begin{array}{r} .800 \\ 1.000 \end{array}$	$\begin{array}{r} .601 \\ 1.003 \end{array}$	$\text { . } 9479$	$\begin{array}{r} -.682 \\ 1.000 \end{array}$	$\begin{array}{r} .586 \\ 1.002 \end{array}$	$\begin{aligned} & 1.000 \\ & 1.226 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.402 \end{aligned}$	$\begin{aligned} & 1.002 \\ & 1.410 \end{aligned}$				
-3	-	-	$\begin{array}{r} .609 \\ .997 \end{array}$	$\begin{aligned} & .093 \\ & .999 \end{aligned}$	$\begin{array}{r} -.484 \\ 1.000 \end{array}$	$\begin{array}{r} .952 \\ 1.000 \end{array}$	$\begin{array}{r} .998 \\ 1.506 \end{array}$	$\begin{aligned} & 1.002 \\ & 1.532 \end{aligned}$	$\begin{aligned} & 1.002 \\ & 1.402 \end{aligned}$				
--2	-	-	-	$\begin{array}{r} .103 \\ 1.001 \end{array}$	$\begin{array}{r} -.548 \\ 1.000 \end{array}$	$\begin{aligned} & 1.000 \\ & 1.138 \end{aligned}$	$\begin{aligned} & 1.002 \\ & 1.656 \end{aligned}$	$\begin{array}{r} .998 \\ 1.506 \end{array}$	$\begin{aligned} & 1.000 \\ & 1.226 \end{aligned}$				
-1	-	-	-	-	$\begin{array}{r} -1.144 \\ \quad 1.000 \end{array}$	$\begin{aligned} & 0.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.138 \end{aligned}$	$\begin{aligned} & .952 \\ & 1.000 \end{aligned}$	$\begin{array}{r} .586 \\ 1.002 \end{array}$	$\begin{aligned} & 0.288 \\ & 1.000 \end{aligned}$			
${ }^{1}$	\because	-	-	"		1.00 -1.144 1.000	$\begin{array}{r} -.548 \\ 1.000 \end{array}$	$\begin{array}{r} -.484 \\ 1-000 \end{array}$	- 1.682	$\bigcirc 1.862$	$\begin{array}{r} -.956 \\ \hline 1.000 \end{array}$		
2	-	-	-	-	-	-	$\begin{array}{r} .103 \\ 1.001 \end{array}$	$\begin{array}{r} .093 \\ .999 \end{array}$	$\begin{array}{r} .047 \\ .999 \end{array}$	$\begin{array}{r} .016 \\ 1.000 \end{array}$	$\begin{array}{r} .004 \\ 1.000 \end{array}$	$\begin{aligned} & .002 \\ & .998 \end{aligned}$	
						-		$\begin{aligned} & .609 \\ & \hline 997 \end{aligned}$	$\begin{array}{r} .601 \\ 1.003 \end{array}$	$\begin{array}{r} .600 \\ 1.002 \end{array}$.600 1.000	$\begin{array}{r} .600 \\ 1.000 \end{array}$	$\begin{array}{r} .600 \\ 1.000 \end{array}$
								-	$\begin{array}{r} .800 \\ 1.000 \end{array}$	$\begin{array}{r} .800 \\ 1,000 \end{array}$	$\begin{array}{r} .800 \\ 1.000 \end{array}$	$\begin{array}{r} .800 \\ 1.000 \end{array}$	$\begin{array}{r} .800 \\ 1.000 \end{array}$

Table 2 gives the values of a and b for the same Δ_{0} and Δ_{1} as in Table 1.

From Table 1, we see that:
(a) If

$$
\Delta_{1}=0
$$

or

$$
\Delta_{0}=0
$$

or

$$
\left(\Delta_{0}=-1, \Delta_{1}=1\right)
$$

any value of k leads to improvement of $\hat{\mu}$ over \bar{x}.
or
(b) If either

$$
\begin{gathered}
0<\triangle_{0}<2 \\
-2<\triangle_{1}<0,
\end{gathered}
$$

any value of k around .6 will result in improvement of \hat{u}.
(c) If $\left(\triangle_{1}=1, \triangle_{0}=-5\right)$ or $\left(\triangle_{1}=5, \triangle_{0}=-1\right), k^{*}$ is small.

From Table 2, we see that when $k^{*}<1, a$ is approximately equal to k^{*} and when $k^{*}>1, b$ is approximately equal to k^{*}. Thus the effective values of k indicated by both the tables are same.

We thus suggest to choose k in the following manner :
(a) If μ is expected to lie very near to μ_{0} or μ_{1} or $\frac{\mu_{0}+\mu_{1}}{2}$, any valve of k may be chosen.
(b) If μ is not expected to differ from μ_{0} or μ_{1} by more than σ / \sqrt{n}, and does not lie between them, we may choose $k>1 / 10$.
(c) If μ does not lie between μ_{0} and μ_{1} and does not differ from them by more than $\frac{2 \sigma}{\sqrt{n}}, k$ should be taken around .6 .
(d) In other situations k should be taken as 1 , i.e., \bar{x} should be used to estimate μ.

Summary

In this paper we have suggested a class of pre-test shrinkage estimator of mean of a normal population which is based on two guessed values of mean. The properties of the estimator have been discussed and recommendations on the choice of a particular member have been attempted on the basis of numerical findings.
$9 \hat{8}$ Journal of the indian society of agriculutúal statistics

References

[1] Pradhan, Meena
: On Testing a Simple Hypothesis Against a Simple Alternative Making the Sum of the Probabilities of Two Types of Errors Minimum, Jour. Ind. Statist. Assoc. Vol. 6, (1968). pp. 149-159.
[2] Singh, J. and Pandey, M.
[3] Thompson, J.R.
: A Note on Testing Mean of a Normal Population When Variance is Unknown, To be published in Jour. Ind. Statist. Assoc., 1978.
: Some Shrinkage Techniques for Estimating the Mean, Jour. Amer. Statist. Assoc., Vol. 63, (1968) pp. 113-126.

[^0]: *Presently at the School of Studies in Statistics Vikram University, Ujjain.

