A PRE-TEST SHRINKAGE ESTIMATOR OF MEAN OF A NORMAL POPULATION

By

M. PANDEY AND J. SINGH* Banaras Hindu University (Received : January, 1977)

1. INTRODUCTION

Consider a rondom sample of size *n* from *a* normal population with mean μ and variance σ^2 , where σ^2 may be unknown. If σ_2 is known, Pradhan [1] proved that a test of $H_0: \mu = \mu_0$ against $H_1:$ $\mu = \mu_1, (\mu_1 > \mu_0)$, which minimizes the sum of the probabilities of two types of error, is given by :

Reject
$$H_0$$
 if, $\bar{x} \ge \frac{\mu_0 + \mu_1}{2}$, (1)

where \overline{x} is the sample mean. If σ^2 is not known, Singh and Pandey [2] proved that the test (1) still minimizes the sum of the probabilities of two types of error for testing H_0 .

Thompson [3] showed that if we have some prior knowledge of the value of μ as μ_0 , the shrinkage estimator $k \bar{x} + (1-k) \mu_0$, $(0 \le k \le 1)$, performs better in some region of the parameter space. Now suppose from the familarity with the experimental material we have two guessed values of μ ; that is, we expect either $\mu = \mu_0$ or $\mu = \mu_1$. In this case to decide upon the value of μ , we can perform a preliminary test H_0 according to rule (1). After this we can estimate μ by $k_1 \bar{x}$ $+(1-k_1) \mu_0$, if H_0 is accepted and by $k_2 \bar{x} + (1-k_2) \mu_1$, if H_0 is rejected, $0 \le k_i \le 1$; i=1, 2).

To make the problem simpler we have taken $k_1 = k_2 = k$ and have defined here a preliminary test shrinkage estimator $\hat{\mu}$. We have also discussed its properties and have recommended on the choice of k on the basis of numerical findings.

*Presently at the School of Studies in Statistics Vikram University, Ujjain.

92 journab of the indian societa of agricultural statistics

2. The Proposed Estimator and its Properties

. We suggest the following estimator $\hat{\mu}$ for μ : We find that,

$$\dot{\mu} \dots \begin{cases} k\bar{x} + (1-k) \ \mu_0 & \text{if } \bar{x} \leq \frac{\mu_0 + \mu_1}{2} \\ k\bar{x} + (1-k) \ \mu_1 & \text{if } \bar{x} > \frac{\mu_0 + \mu_1}{2} \end{cases} \dots (2)$$

We find that,

Bias
$$(\hat{\mu}) = E(\hat{\mu}) - \mu = (1-k) (\mu_1 - \mu) + (1-k) (\mu_0 - \mu_1) \phi (\mu_0)$$
...(3)

$$\phi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \text{ and } \phi(t) = \int_{-\infty}^{t} \phi(u) du \qquad \dots(4)$$

Where $u_0 = \frac{(\mu_0 + \mu_1 - 2\mu)/\sqrt{n}}{2\sigma}$,

The mean square error (MSE) of $\hat{\mu}$ is

$$MSE(\hat{\mu}) = E(\hat{\mu} - \mu)^{2}$$

$$= \frac{\sigma^{2}}{n} \left[k^{2} + (1 - k)^{2} \Delta_{1}^{2} + 2k (1 - k) (\Delta_{1} - \Delta_{0}) \phi(u_{0}) - (1 - k)^{2} (\Delta_{1}^{2} - \Delta_{0}^{2}) \phi(u_{0}) \right], \quad \dots (5)$$
where $\Delta_{1} = \frac{\sqrt{n(\mu_{1} - \mu)}}{\sigma}$ and $\Delta_{0} = \frac{\sqrt{n(\mu_{0} - \mu)}}{\sigma}.$

2.1 Efficiency of $\hat{\mu}$ w. r. to \bar{x} :

We define the efficiency of μ w. r. to \overline{x} as

$$e = \frac{nMSE(\bar{\mathbf{x}})}{MSE(\hat{\mu})} = \frac{\sigma^2}{nMSE(\hat{\mu})}$$

We get,

$$e = [k^{2} + (1-k)^{2} \triangle_{1}^{2} + 2k(1-k)(\triangle_{1} - \triangle_{0})\varphi u_{0}) - (1-k)^{2}(\triangle_{1}^{2} - \triangle_{0}^{2})\phi(u_{0})]^{-1} \qquad \dots \quad (6)$$

2.2 THE VALUE OF k FOR WHICH μ HAS MINIMUM MSE: Differentiating (5) w.r. to k we get

$$\frac{\partial \text{ MLE } (\hat{\mu})}{\partial k} = \frac{2\sigma^2}{n} \left[k \left\{ 1 + \Delta_1^2 - 2(\Delta_1 - \Delta_0) \varphi (\mu_0) - \left(\Delta_1^2 - \Delta_0^2 \right) \Phi (u_0) \right) \right\} - \Delta_1^2 + (\Delta_1 - \Delta_0) \varphi (u_0) + (\Delta_1^2 - \Delta_0^2) \Phi (u_0) \right] \dots (7)$$

Equating (7) to zero the optimum value of k for which MSE (μ) is minimum is given by

$$k = \frac{\Delta_{1}^{2}(\Delta_{1} - \Delta_{0}) \varphi(u_{0}) - (\Delta_{1}^{2} - \Delta_{0}^{2}) \Phi(u_{0})}{1 + \Delta_{1}^{2} - 2(\Delta_{1} - \Delta_{0}) \varphi(u_{0}) - (\Delta_{1}^{2} - \Delta_{0}^{2}) \Phi(u_{0})} = k_{min} (say)...(8)$$

- 2.3 The Range of Values of k for which $\hat{\mu}$ is more Efficient than \overline{z}
 - From (6) we see tha e > 1, if

$$(k-1)\left[k\left\{1+\Delta_{1}^{2}-2(\Delta_{1}-\Delta_{0})\varphi(u_{0})\left(\Delta_{1}^{2}-\Delta_{0}^{2}\right)\Phi(u_{0})\right\}\right.$$
$$\left.+1-\Delta_{1}^{2}+\left(\Delta_{1}^{2}-\Delta_{0}^{2}\right)\Phi(u_{0})\right]<0. \qquad ...(9)$$

It may be checked, by evaluating $\mu_0 + \mu_1$

$$\int_{-\infty}^{2} (\bar{x}-\mu_0)^2 f(\bar{x}) d\bar{x} + \int_{-\infty}^{\infty} (\bar{x}-\mu_1)^2 f(\bar{x}) d\bar{x}, \text{ that the denominator of } \frac{\mu_0+\mu_1}{2}$$

expression (8) is positive. If k < 1, on diving (9) by k-1 we get $k > k^*$,(10)

$$k^{*} = \frac{\bigtriangleup_{1}^{2} - 1 - \left(\bigtriangleup_{1}^{2} - \bigtriangleup_{0}^{2}\right) \Phi(u_{0})}{1 + \bigtriangleup_{1}^{2} - 2(\bigtriangleup_{1} - \bigtriangleup_{0}) \varphi(u_{0}) - \left(\bigtriangleup_{1}^{2} - \bigtriangleup_{0}^{2}\right) \Phi(u_{0})}$$
In dividing (0) by $h = 1$ we get

...(12)

where

If
$$k>1$$
, on dividing (9) by $k-1$ we get
 $k < k^*$

Combining (10) and (12), we infer that e > 1, if either $k^* < k < 1$ or $1 < k < k^*$ (13)

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 94

The inequality (9) can also be written as

$$k^{2} \begin{bmatrix} 1 + \triangle_{1}^{2} - 2(\triangle_{1} - \triangle_{0}) \varphi(u_{0}) - (\triangle_{1}^{2} - \triangle_{0}^{2}) \Phi(u_{0}) \end{bmatrix}$$

-2k $\begin{bmatrix} \triangle_{1}^{2} - (\triangle_{1} - \triangle_{0}) \varphi(u_{0}) - (\triangle_{1}^{2} - \triangle_{0}^{2}) \Phi(u_{0}) \end{bmatrix}$
+ $\triangle_{1}^{2} - 1 - (\triangle_{1}^{2} - \triangle_{0}^{2}) \Phi(u_{0}) < 0.$...(14)

From (8) and (11) this is equivalent to $k^2 - 2k k_{min} + k^* < 0.$

$$a < k < b, \qquad \dots (16)$$

...(15)

 $a=k_{min}-\sqrt{k_{min}^2-k^*}$ where

and
$$b = k_{min} + \sqrt{\frac{k_2}{min} - k^*}$$
....(17)

a > 1

However, expression (16) holds if $k_{min}^2 - k^*$ is positive, that is to say, if the roots of the quadratic equation $k^2 - 2k k_{min} + k^* = 0$, are real.

Further it can be noted that,

$$k^{*}-k_{min} = \frac{(\bigtriangleup_{1}-\bigtriangleup_{0}) \varphi(u_{0})-1}{1+\bigtriangleup_{1}^{2}-2(\bigtriangleup_{1}-\bigtriangleup_{0}) \varphi(u_{0})-\left(\bigtriangleup_{1}^{2}-\bigtriangleup_{0}^{2}\right) \Phi(u_{0})}$$

= $\frac{1}{2} (k^{*}-1).$...(18)
if $k^{*}<1, \quad k_{min}>k^{*}$ (19)

and

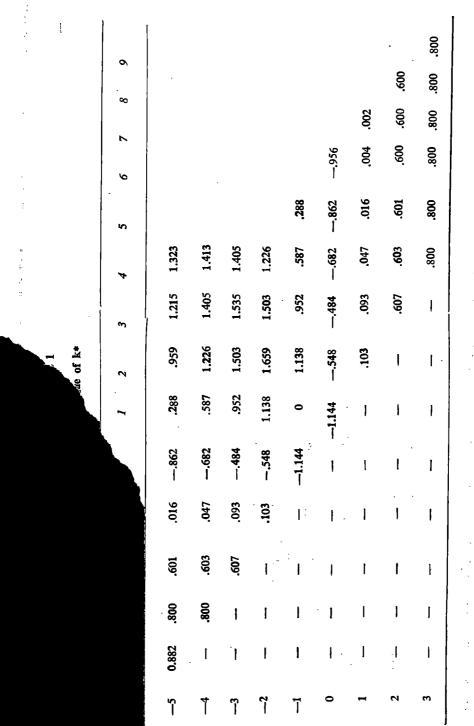
So.

 $k^* > 1$, $k_{min} < k^*$ if Thus if we choose the value of $k=k_{min}$, MSE of $\hat{\mu}$ will be a minimum and will always be less than σ^2/n .

Since we want $0 \le k \le 1$, in case $k^* > 1$, we take k = 1. In other situations κ^* should be the lower limit of the values of k.

3.—NUMERICAL FINDINGS AND RECOMMENDATIONS

Table 1 shows the values of k^* for various Δ_0 and Δ_1 . Since we are considering the case $\mu_1 > \mu_0$, $\Delta_1 > \Delta_0$. Moreover, for any \triangle_0 there is only one possible value of \triangle_1 , viz., $\triangle_0 + \frac{\mu_1 - \mu_0}{\sigma/n}$. Since $\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}$ is not known, we consider various values of Δ_1 for a given Δ_0 .



Á PRE-TEST SHRINKAGE ESTIMATOR OF A NORMAL POPULATION

9**5**

		{	[1
TABLE 2	Value of a and b	 œ							.600	.800 1.000
		~						.002 .998	.600	.800 1.000
		ø					956 1.000	.004 1.000	.600 1.000	.809 1.000
		5				0.288 1.000	—.862 1.000	.016 1.000	.600 1.002	.800 1,000
		. 4	1.003 1.319 1.002 1.410	1.002 1.402	1.000	.586 1.002	—.682 1.000	.047 .999	.601 1.003	.800
		, w	.955 1.221 1.402	1.002 1.532	.998 1.506	.952 1.000		.093 .999	609. 997	
		, P	.943 1.017 1.226	.998 1.506	1.002 1.656	1.000 1.138	548 1.000	.103 1.001		
		I	.288 1.000 1.002	.952	1.000	0.000	-1.144	l	}	ļ
		0	,	484 1.000				I		
		1	0.16 1.000 .047 .999	.093 999	1.001	1	;	1		
		7	.600 1.002 1.003	609. 766.	1 -;	1]	۱ <u>"</u>	1		
		و	.800 1.000 1.000 1.000		ł		1	1		
1		4	5 882 4 		1	l		!		
	е. 	∆° ∆1 −4 −3	, , , , , , , , , , , , , , , , , , ,	- 1	?	Ī	- 1	2		

.

 $\dot{9}6$ journal of the indian society of agricultural statistics

A pré-test shrinkage estimator of a nórmal population 97

Table 2 gives the values of a and b for the same \triangle_0 and \triangle_1 as in Table 1.

From Table 1, we see that:

(a) If
$$\triangle_1 = 0$$

or
$$\triangle_0 = 0$$

or

or
$$(\triangle_0 = -1, \triangle_1 = 1)$$

any value of k leads to improvement of $\hat{\mu}$ over \overline{x} .

(b) If either $0 < \triangle_0 < 2$ $-2 < \triangle_1 < 0$.

any value of k around .6 will result in improvement of $\hat{\mu}$.

(c) If $(\triangle_1=1, \triangle_0=-5)$ or $(\triangle_1=5, \triangle_0=-1)$, k^* is small.

From Table 2, we see that when $k^* < 1$, *a* is approximately equal to k^* and when $k^* > 1$, *b* is approximately equal to k^* . Thus the effective values of *k* indicated by both the tables are same.

We thus suggest to choose k in the following manner :

(a) If μ is expected to lie very near to μ_0 or μ_1 or $\frac{\mu_0 + \mu_1}{2}$, any value of k may be chosen.

(b) If μ is not expected to differ from μ_0 or μ_1 by more than σ/\sqrt{n} , and does not lie between them, we may choose k>1/10.

(c) If μ does not lie between μ_0 and μ_1 and does not differ from them by more than $\frac{2\sigma}{\sqrt{n}}$, k should be taken around .6.

(d) In other situations k should be taken as 1, *i.e.*, \overline{x} should be used to estimate μ .

SUMMARY

In this paper we have suggested a class of pre-test shrinkage estimator of mean of a normal population which is based on two guessed values of mean. The properties of the estimator have been discussed and recommendations on the choice of a particular member have been attempted on the basis of numerical findings.

98 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

REFERENCES

- [1] Pradhan, Meena
 : On Testing a Simple Hypothesis Against a Simple Alternative Making the Sum of the Probabilities of Two Types of Errors Minimum, Jour. Ind. Statist. Assoc. Vol. 6, (1968). pp. 149-159.
 - , : A Note on Testing Mean of a Normal Population When Variance is Unknown, To be published in *Jour. Ind. Statist. Assoc.*, 1978.
 - : Some Shrinkage Techniques for Estimating the Mean, Jour. Amer. Statist. Assoc., Vol. 63, (1968) pp. 113-126.
- [2] Singh, J. and Pandey, M.
- [3] Thompson, J.R.